[[Algebraic number theory MOC]]
# Cyclotomic integers
Let $\zeta_{n} = \mathrm{e}^{2i\pi/n}$ be a primitive $n$th root of unity.
Then the **cyclotomic integers** $\mathbb{Z}[\zeta_{n}]$ are the [[Algebraic integer|ring of integers]] in the [[Cyclotomic field]] $\mathbb{Q}[\zeta_{n}]$. #m/thm/ring
> [!missing]- Proof
> #missing/proof
#
---
#state/develop | #lang/en | #SemBr